Hamiltonian thermodynamics of a Lovelock black hole
نویسندگان
چکیده
We consider the Hamiltonian dynamics and thermodynamics of spherically symmetric spacetimes within a one-parameter family of five-dimensional Lovelock theories. We adopt boundary conditions that make every classical solution part of a black hole exterior, with the spacelike hypersurfaces extending from the horizon bifurcation three-sphere to a timelike boundary with fixed intrinsic metric. The constraints are simplified by a Kuchař-type canonical transformation, and the theory is reduced to its true dynamical degrees of freedom. After quantization, the trace of the analytically continued Lorentzian time evolution operator is interpreted as the partition function of a thermodynamical canonical ensemble. Whenever the partition function is dominated by a Euclidean black hole solution, the entropy is given by the Lovelock analogue of the Bekenstein-Hawking entropy; in particular, in the low temperature limit the system exhibits a dominant classical solution that has no counterpart in Einstein’s theory. The asymptotically flat space limit of the partition function does not exist. The results indicate qualitative robustness of the thermodynamics of five-dimensional Einstein theory upon the addition of a nontrivial Lovelock term. @S0556-2821~97!03806-X#
منابع مشابه
Entropy of Lovelock Black Holes
A general formula for the entropy of stationary black holes in Lovelock gravity theories is obtained by integrating the first law of black hole mechanics, which is derived by Hamiltonian methods. The entropy is not simply one quarter of the surface area of the horizon, but also includes a sum of intrinsic curvature invariants integrated over a cross section of the horizon. jacobson@umdhep rcm@h...
متن کاملBlack-hole thermodynamics in Lovelock gravity.
five dimensions, one finds that the specific heat of a black hole becomes positive at small mass, allowing the black hole to achieve stable equilibrium with its environment and giving it an infinite lifetime. This behavior is not universal, however, but it always occurs in 2k+1 dimensions for a Lovelock theory including the 2k-dimensional Euler density. For theories including six-derivative or ...
متن کاملUniversality of P − V Criticality in Horizon Thermodynamics
We study P − V criticality of black holes in Lovelock gravities in the context of horizon thermodynamics. The corresponding first law of horizon thermodynamics emerges as one of the Einstein–Lovelock equations and assumes the universal (independent of matter content) form δE = TδS − PδV , where P is identified with the total pressure of all matter in the spacetime (including a cosmological cons...
متن کاملA Note on Thermodynamics of Black Holes in Lovelock Gravity
The Lovelock gravity consists of the dimensionally extended Euler densities. The geometry and horizon structure of black hole solutions could be quite complicated in this gravity, however, we find that some thermodynamic quantities of the black holes like the mass, Hawking temperature and entropy, have simple forms expressed in terms of horizon radius. The case with black hole horizon being a R...
متن کاملBlack Hole Evaporation and Higher-Derivative Gravity I
We examine the role which higher-derivative gravity interactions may play in black hole evaporation. The thermodynamic properties of black holes in Lovelock gravity are described. In certain cases, the specific heat of a black hole becomes positive at a small mass. This results in an infinite lifetime for the black hole (and also allows it to achieve stable equilibrium with a thermal environmen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996